4,283 research outputs found

    Introduction to the Analysis of Low-Frequency Gravitational Wave Data

    Get PDF
    The space-based gravitational wave detector LISA will observe in the low-frequency gravitational-wave band (0.1 mHz up to 1 Hz). LISA will search for a variety of expected signals, and when it detects a signal it will have to determine a number of parameters, such as the location of the source on the sky and the signal's polarisation. This requires pattern-matching, called matched filtering, which uses the best available theoretical predictions about the characteristics of waveforms. All the estimates of the sensitivity of LISA to various sources assume that the data analysis is done in the optimum way. Because these techniques are unfamiliar to many young physicists, I use the first part of this lecture to give a very basic introduction to time-series data analysis, including matched filtering. The second part of the lecture applies these techniques to LISA, showing how estimates of LISA's sensitivity can be made, and briefly commenting on aspects of the signal-analysis problem that are special to LISA.Comment: 20 page

    Low-Frequency Sources of Gravitational Waves: A Tutorial

    Get PDF
    Gravitational wave detectors in space, particularly the LISA project, can study a rich variety of astronomical systems whose gravitational radiation is not detectable from the ground, because it is emitted in the low-frequency gravitational wave band (0.1 mHz to 1 Hz) that is inaccessible to ground-based detectors. Sources include binary systems in our Galaxy and massive black holes in distant galaxies. The radiation from many of these sources will be so strong that it will be possible to make remarkably detailed studies of the physics of the systems. These studies will have importance both for astrophysics (most notably in binary evolution theory and models for active galaxies) and for fundamental physics. In particular, it should be possible to make decisive measurements to confirm the existence of black holes and to test, with accuracies better than 1%, general relativity's description of them. Other observations can have fundamental implications for cosmology and for physical theories of the unification of forces. In order to understand these conclusions, one must know how to estimate the gravitational radiation produced by different sources. In the first part of this lecture I review the dynamics of gravitational wave sources, and I derive simple formulas for estimating wave amplitudes and the reaction effects on sources of producing this radiation. With these formulas one can estimate, usually to much better than an order of magnitude, the physics of most of the interesting low-frequency sources. In the second part of the lecture I use these estimates to discuss, in the context of the expected sensitivity of LISA, what we can learn by from observations of binary systems, massive black holes, and the early Universe itself.Comment: 12 pages, 2 figure

    Loosely coherent searches for sets of well-modeled signals

    Get PDF
    We introduce a high-performance implementation of a loosely coherent statistic sensitive to signals spanning a finite-dimensional manifold in parameter space. Results from full scale simulations on Gaussian noise are discussed, as well as implications for future searches for continuous gravitational waves. We demonstrate an improvement of more than an order of magnitude in analysis speed over previously available algorithms. As searches for continuous gravitational waves are computationally limited, the large speedup results in gain in sensitivity

    Removing Line Interference from Gravitational Wave Interferometer Data

    Get PDF
    We describe a procedure to identify and remove a class of interference lines from gravitational wave interferometer data. We illustrate the usefulness of this technique applying it to prototype interferometer data and removing all those lines corresponding to the external electricity main supply and related features.Comment: Latex 6 pages, 5 figures. To appear in: "Gravitational Wave Detection II". Edt. Rie Sasaki; Universal Academy Press, Inc, Tokyo, Japa

    An efficient Matched Filtering Algorithm for the Detection of Continuous Gravitational Wave Signals

    Get PDF
    We describe an efficient method of matched filtering over long (greater than 1 day) time baselines starting from Fourier transforms of short durations (roughly 30 minutes) of the data stream. This method plays a crucial role in the search algorithm developed by Schutz and Papa for the detection of continuous gravitational waves from pulsars. Also, we discuss the computational cost--saving approximations used in this method, and the resultant performance of the search algorithm.Comment: 4 pages, text only, accepted for publication in the proceedings of the 3rd Amaldi conference on gravitational wave

    Gravitational Radiation

    Get PDF
    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists

    Detection of gravitational waves from inspiraling compact binaries using a network of interferometric detectors

    Full text link
    We formulate the data analysis problem for the detection of the Newtonian waveform from an inspiraling compact-binary by a network of arbitrarily oriented and arbitrarily distributed laser interferometric gravitational wave detectors. We obtain for the first time the relation between the optimal statistic and the magnitude of the network correlation vector, which is constructed from the matched network-filter. This generalizes the calculation reported in an earlier work (gr-qc/9906064), where the detectors are taken to be coincident.Comment: 6 pages, RevTeX. Based on talk given at GWDAW-99, Rom

    Exact and Quasi-exact Models of Strange Stars

    Full text link
    We construct and compare a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and many differences among the models are explicitly shown and discussed.Comment: 20 pp. 15 figures, to appear in IJMP
    • 

    corecore